24. |
Transition metal scaffolds used to bring new-to-nature reactions into biological systems
Liu Y, Lai KL, and Vong K* Eur. J. Inorg. Chem. 2022, doi:10.1002/ejic.202200215 |
23. |
Synthetic prodrug design enables biocatalytic activation in mice to elicit tumor
growth suppression
Nasibullin I, Smirnov I, Ahmadi P, Vong K, Kurbangalieva A, and Tanaka K* Nat. Commun. 2022, 13, 39 |
22. |
Prodrug activation by gold artificial metalloenzyme-catalyzed synthesis
of phenanthridinium derivatives via hydroamination
Chang TC, Vong K, Yamamoto T, and Tanaka K* Angew. Chem. Int. Ed. 2021, 60, 22, 12446-12454 |
21. |
Disrupting tumor onset and growth via selective cell tagging (SeCT) therapy
Vong Kǂ, Tahara Tǂ, Urano S, Nasibullin I, Tsubokura K, Nakao Y, Kurbangalieva A, Onoe H, Watanabe Y, and Tanaka K* Sci. Adv. 2021, 7, 17, eabg4038 |
20. |
Exploring and adapting the molecular selectivity of artificial metalloenzymes
Vong K, Nasibullin I, and Tanaka K* Bull. Chem. Soc. Jpn. 2021, 94, 2, 382-396 |
19. |
The journey to in vivo synthetic chemistry: From azaelectrocyclization to artificial
metalloenzymes
Tanaka K* and Vong K Bull. Chem. Soc. Jpn. 2020, 93, 11, 1275-1286 |
18. |
Bioorthogonal release of anticancer drugs via gold-triggered 2-alkynylbenzamide
cyclization
Vong K*, Yamamoto T, Chang TC, and Tanaka K* Chem. Sci. 2020, 11, 40, 10928-10933 |
17. |
Artificial glycoproteins as a scaffold for targeted drug therapy
Vong K, Yamamoto T, and Tanaka K* Small. 2020, 16, 27, 1906890 |
16. |
Unlocking the therapeutic potential of artificial metalloenzymes
Tanaka K* and Vong K Proc. Jpn. Acad. Ser. B. 2020, 96, 3, 79-94 |
15. |
An artificial metalloenzyme biosensor can detect ethylene gas in fruits and Arabidopsis
leaves
Vong Kǂ, Eda Sǂ, Kadota Y, Nasibullin I, Wakatake T, Yokoshima S, Shirasu K, and Tanaka K* Nat. Commun. 2019, 10, 5746 |
14. |
Biocompatibility and therapeutic potential of glycosylated albumin artificial
metalloenzymes
Eda Sǂ, Nasibullin Iǂ, Vong Kǂ, Kudo N, Yoshida M, Kurbangalieva A, and Tanaka K* Nat. Catal. 2019, 2, 9, 780-792 |
13. |
Cellular studies of an aminoglycoside potentiator reveal a new inhibitor of
aminoglycoside
resistance
Guan J, Vong K, Wee K, Fakhoury J, Dullaghan E, and Auclair K* ChemBioChem. 2018, 19, 19, 2107-2113 |
12. |
Viable strategy for screening the effects of glycan heterogeneity on target organ
adhesion
and biodistribution in live mice
Ogura A, Urano S, Tahara T, Nozaki S, Sibgatullina R, Vong K, Kurbangalieva A, Watanabe Y, and Tanaka K* Chem. Commun. 2018, 54, 63, 8693-8696 |
11. |
2-Benzoylpyridine ligand complexation with gold critical for propargyl ester-based
protein
labeling
Lin Yǂ, Vong Kǂ, Matsuoka K, and Tanaka K* Chem. Eur. J. 2018, 24, 42, 10595-10600 |
10. |
Therapeutic in vivo synthetic chemistry: exploring on opportunity to activate drugs at
specific sites in the body
Tsubokura K, Vong K, Sibgatullina R, Kurbangalieva A, and Tanaka K* Eur. J. Clin. Investig. 2018, 48, Suppl 1, 219-220 |
9. |
Cancer cell targeting driven by selective polyamine reactivity with glycine propargyl
esters
Vong K, Tsubokura K, Nakao Y, Tanei T, Noguchi S, Kitazume S, Taniguchi N, and Tanaka K* Chem. Commun. 2017, 53, 60, 8403-8406 |
8. |
In vivo gold complex catalysis within live mice
Tsubokura Kǂ, Vong Kǂ, Pradipta AR, Ogura A, Urano S, Tahara T, Nozaki S, Onoe H, Nakao Y, Sibgatullina R, Kurbangalieva A, Watanabe Y, and Tanaka K* Angew. Chem. Int. Ed. 2017, 56, 13, 3579-3584 |
7. |
Propargyl-assisted selective amidation applied in C-terminal glycine peptide conjugation
Vong K, Maeda S, and Tanaka K* Chem. Eur. J. 2016, 22, 52, 18865-18872 |
6. |
Cell surface and in vivo interaction of dendrimeric N-glycoclusters
Taichi M, Kitazume S, Vong K, Imamaki R, Kurbangalieva A, Taniguchi N, and Tanaka K* Glycoconj. J. |
5. |
Exploring structural motifs necessary for substrate binding in the active site of
Escherichia coli pantothenate kinase
Awuah E, Ma E, Hoegl A, Vong K, Habib E, and Auclair K* Bioorg. Med. Chem. 2014, 22, 12, 3083-3090 |
4. |
Inhibitors of aminoglycoside resistance activated in cells
Vong K, Tam IS, Yan X, and Auclair K* ACS Chem. Biol. 2012, 7, 3, 470-475 |
3. |
Understanding and overcoming aminoglycoside resistance caused by
N-6'-acetyltransferase
Vong K, and Auclair K* MedChemComm. 2012, 3, 4, 397-407 |
2. |
Geminal dialkyl derivatives of N-substituted pantothenamides: synthesis and
antibacterial
activity
Akinnusi TO, Vong K, and Auclair K* Bioorg. Med. Chem. 2011, 19, 8, 2696-2706 |
1. |
Synthesis and use of sulfonamide-, sulfoxide-, or sulfone-containing aminoglycoside-CoA
bisubstrates as mechanistic probes for aminoglycoside N-6'-acetyltransferase
Gao F, Yan X, Zahr O, Larsen A, Vong K, and Auclair K* Bioorg. Med. Chem. Lett. 2008, 18, 20, 5518-5522 |
3. |
In vivo metal catalysis in living biological systems (Chapter 11)
Vong K and Tanaka K Book: Handbook of in vivo chemistry in mice: From lab to living system. Tanaka K and Vong K (eds) Wiley, 2020, pp 309-354 |
2. |
Glycan-mediated targeting methods (Chapter 17)
Vong K, Tanaka K and Fukase K Book: Handbook of in vivo chemistry in mice: From lab to living system. Tanaka K and Vong K (eds) Wiley, 2020, pp 489-530 |
1. |
Influence of glycosylation pattern on protein biodistribution and kinetics in vivo
within
mice (Chapter 7)
Vong K and Tanaka K Book: Kinetic control in synthesis and self-assembly. Numata M, Yagai S, and Hamura T (eds) Elsevier, 2018, pp 127-161 |
2. |
Novel artificial protein catalyst, and use thereof
Inventors: Tanaka K, Vong K, and Shimoda T Worldwide Patent: WO2020241340 Filed: May 18, 2020 |
1. |
Compounds for use in the treatment of bacterial infection.
Inventors: Auclair K and Vong K Worldwide Patent: WO2012097454A1 Filed: Jan 17, 2012 |