Publications

( ǂEqual Authorship / *Corresponding Authors )

24. Transition metal scaffolds used to bring new-to-nature reactions into biological systems
Liu Y, Lai KL, and Vong K*
Eur. J. Inorg. Chem. 2022, doi:10.1002/ejic.202200215
23. Synthetic prodrug design enables biocatalytic activation in mice to elicit tumor growth suppression
Nasibullin I, Smirnov I, Ahmadi P, Vong K, Kurbangalieva A, and Tanaka K*
Nat. Commun. 2022, 13, 39

Before HKUST


22. Prodrug activation by gold artificial metalloenzyme-catalyzed synthesis of phenanthridinium derivatives via hydroamination
Chang TC, Vong K, Yamamoto T, and Tanaka K*
Angew. Chem. Int. Ed. 2021, 60, 22, 12446-12454
21. Disrupting tumor onset and growth via selective cell tagging (SeCT) therapy
Vong Kǂ, Tahara Tǂ, Urano S, Nasibullin I, Tsubokura K, Nakao Y, Kurbangalieva A, Onoe H, Watanabe Y, and Tanaka K*
Sci. Adv. 2021, 7, 17, eabg4038
20. Exploring and adapting the molecular selectivity of artificial metalloenzymes
Vong K, Nasibullin I, and Tanaka K*
Bull. Chem. Soc. Jpn. 2021, 94, 2, 382-396
19. The journey to in vivo synthetic chemistry: From azaelectrocyclization to artificial metalloenzymes
Tanaka K* and Vong K
Bull. Chem. Soc. Jpn. 2020, 93, 11, 1275-1286
18. Bioorthogonal release of anticancer drugs via gold-triggered 2-alkynylbenzamide cyclization
Vong K*, Yamamoto T, Chang TC, and Tanaka K*
Chem. Sci. 2020, 11, 40, 10928-10933
17. Artificial glycoproteins as a scaffold for targeted drug therapy
Vong K, Yamamoto T, and Tanaka K*
Small. 2020, 16, 27, 1906890
16. Unlocking the therapeutic potential of artificial metalloenzymes
Tanaka K* and Vong K
Proc. Jpn. Acad. Ser. B. 2020, 96, 3, 79-94
15. An artificial metalloenzyme biosensor can detect ethylene gas in fruits and Arabidopsis leaves
Vong Kǂ, Eda Sǂ, Kadota Y, Nasibullin I, Wakatake T, Yokoshima S, Shirasu K, and Tanaka K*
Nat. Commun. 2019, 10, 5746
14. Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes
Eda Sǂ, Nasibullin Iǂ, Vong Kǂ, Kudo N, Yoshida M, Kurbangalieva A, and Tanaka K*
Nat. Catal. 2019, 2, 9, 780-792
13. Cellular studies of an aminoglycoside potentiator reveal a new inhibitor of aminoglycoside resistance
Guan J, Vong K, Wee K, Fakhoury J, Dullaghan E, and Auclair K*
ChemBioChem. 2018, 19, 19, 2107-2113
12. Viable strategy for screening the effects of glycan heterogeneity on target organ adhesion and biodistribution in live mice
Ogura A, Urano S, Tahara T, Nozaki S, Sibgatullina R, Vong K, Kurbangalieva A, Watanabe Y, and Tanaka K*
Chem. Commun. 2018, 54, 63, 8693-8696
11. 2-Benzoylpyridine ligand complexation with gold critical for propargyl ester-based protein labeling
Lin Yǂ, Vong Kǂ, Matsuoka K, and Tanaka K*
Chem. Eur. J. 2018, 24, 42, 10595-10600
10. Therapeutic in vivo synthetic chemistry: exploring on opportunity to activate drugs at specific sites in the body
Tsubokura K, Vong K, Sibgatullina R, Kurbangalieva A, and Tanaka K*
Eur. J. Clin. Investig. 2018, 48, Suppl 1, 219-220
9. Cancer cell targeting driven by selective polyamine reactivity with glycine propargyl esters
Vong K, Tsubokura K, Nakao Y, Tanei T, Noguchi S, Kitazume S, Taniguchi N, and Tanaka K*
Chem. Commun. 2017, 53, 60, 8403-8406
8. In vivo gold complex catalysis within live mice
Tsubokura Kǂ, Vong Kǂ, Pradipta AR, Ogura A, Urano S, Tahara T, Nozaki S, Onoe H, Nakao Y, Sibgatullina R, Kurbangalieva A, Watanabe Y, and Tanaka K*
Angew. Chem. Int. Ed. 2017, 56, 13, 3579-3584
7. Propargyl-assisted selective amidation applied in C-terminal glycine peptide conjugation
Vong K, Maeda S, and Tanaka K*
Chem. Eur. J. 2016, 22, 52, 18865-18872
6. Cell surface and in vivo interaction of dendrimeric N-glycoclusters
Taichi M, Kitazume S, Vong K, Imamaki R, Kurbangalieva A, Taniguchi N, and Tanaka K*
Glycoconj. J.
5. Exploring structural motifs necessary for substrate binding in the active site of Escherichia coli pantothenate kinase
Awuah E, Ma E, Hoegl A, Vong K, Habib E, and Auclair K*
Bioorg. Med. Chem. 2014, 22, 12, 3083-3090
4. Inhibitors of aminoglycoside resistance activated in cells
Vong K, Tam IS, Yan X, and Auclair K*
ACS Chem. Biol. 2012, 7, 3, 470-475
3. Understanding and overcoming aminoglycoside resistance caused by N-6'-acetyltransferase
Vong K, and Auclair K*
MedChemComm. 2012, 3, 4, 397-407
2. Geminal dialkyl derivatives of N-substituted pantothenamides: synthesis and antibacterial activity
Akinnusi TO, Vong K, and Auclair K*
Bioorg. Med. Chem. 2011, 19, 8, 2696-2706
1. Synthesis and use of sulfonamide-, sulfoxide-, or sulfone-containing aminoglycoside-CoA bisubstrates as mechanistic probes for aminoglycoside N-6'-acetyltransferase
Gao F, Yan X, Zahr O, Larsen A, Vong K, and Auclair K*
Bioorg. Med. Chem. Lett. 2008, 18, 20, 5518-5522

Book Chapters


3. In vivo metal catalysis in living biological systems (Chapter 11)
Vong K and Tanaka K
Book: Handbook of in vivo chemistry in mice: From lab to living system. Tanaka K and Vong K (eds)
Wiley, 2020, pp 309-354
2. Glycan-mediated targeting methods (Chapter 17)
Vong K, Tanaka K and Fukase K
Book: Handbook of in vivo chemistry in mice: From lab to living system. Tanaka K and Vong K (eds)
Wiley, 2020, pp 489-530
1. Influence of glycosylation pattern on protein biodistribution and kinetics in vivo within mice (Chapter 7)
Vong K and Tanaka K
Book: Kinetic control in synthesis and self-assembly. Numata M, Yagai S, and Hamura T (eds)
Elsevier, 2018, pp 127-161

Patents


2. Novel artificial protein catalyst, and use thereof
Inventors: Tanaka K, Vong K, and Shimoda T
Worldwide Patent: WO2020241340
Filed: May 18, 2020
1. Compounds for use in the treatment of bacterial infection.
Inventors: Auclair K and Vong K
Worldwide Patent: WO2012097454A1
Filed: Jan 17, 2012